Home » Uncategorized » Page 14

Uncategorized

Uncategorized

LLM system prompt leakage

Large Language Model (LLM) prompt leakage poses a significant security risk as it can expose sensitive data and proprietary information inadvertently shared during interactions with the model. When users submit prompts to LLMs, these inputs may contain confidential details such as private communications, business strategies, or personal data, which could be accessed by unauthorized entities if proper safeguards are not in place. This risk is compounded in cloud-based LLM services, where data transmission between users and the model can be intercepted if encryption and secure data-handling protocols are not robustly enforced. Additionally, if prompts are logged or stored without appropriate anonymization, they can be vulnerable to data breaches, leaving critical information exposed. From a security design perspective, mitigating prompt leakage requires implementing strict access controls, encryption mechanisms, and robust data retention policies. Application developers leveraging LLMs should ensure that prompt data is encrypted both at rest and in transit and that any stored inputs are anonymized or obfuscated to prevent association with identifiable individuals or organizations. Furthermore, user prompts should be subject to periodic auditing and monitoring to detect any suspicious activity, such as unauthorized data extraction or anomalous usage patterns. Building security measures directly into the application’s architecture, such as enforcing the principle of least privilege for accessing prompt data and offering users the ability to manually delete or redact sensitive prompts, can significantly reduce the risk of leakage.

Uncategorized

ChatGPT assumptions made

ChatGPT, like many AI models, operates based on patterns it has learned from a vast dataset of text. One of the key assumptions made is that users generally seek informative, accurate, and contextually relevant answers. Since ChatGPT does not have access to real-time information or the ability to understand user intent beyond the words provided, it assumes that any question posed is either fact-based or seeks a thoughtful interpretation. This leads the model to rely on probabilities derived from the text it has been trained on, making educated guesses about what the user likely wants to know, even if the question is vague or lacks detail. Another assumption ChatGPT makes is that the context of a conversation is sequential and cumulative, meaning it interprets the flow of dialogue based on prior exchanges. It assumes that when users return to it for follow-up questions or clarifications, they expect the system to “remember” the conversation’s context. However, while the model may attempt to maintain coherence across a conversation, it lacks true memory and relies on immediate input, making it vulnerable to misunderstandings or misinterpretations if the dialogue’s context shifts unexpectedly. These assumptions shape how it delivers responses but can also limit the model’s flexibility in understanding complex or evolving conversations.

Uncategorized

Jailbreaking to generate undesired images

Direct prompt injection and jailbreaking are two techniques often employed to manipulate large language models (LLMs) into performing tasks they are normally restricted from executing. Direct prompt injection involves inserting specific phrases or instructions into the input, which can lead the LLM to generate outputs that align with the hidden intent of the user. Jailbreaking, on the other hand, refers to the process of bypassing the built-in safety mechanisms of an LLM, allowing the model to engage in behavior it would typically avoid. Both techniques exploit vulnerabilities in the model’s architecture, often leading the LLM to produce content that could be harmful, misleading, or unethical. A particularly insidious application of these techniques occurs when the LLM is manipulated into believing that the creation of certain content, such as images, serves a beneficial purpose, when in fact it does not. This confusion can be induced by crafting prompts that appeal to the model’s alignment with positive or socially beneficial objectives, causing it to override its safety protocols. For example, an LLM might be convinced to generate an image under the pretense of raising awareness for a social cause, when in reality, the image could be used for misinformation or other malicious intents. Such misuse not only undermines the trustworthiness of LLMs but also poses significant risks, highlighting the need for ongoing vigilance in the development and deployment of these technologies.

Uncategorized

Indirect Prompt Injection with Data Exfiltration

Indirect prompt injection with data exfiltration via markdown image rendering is a sophisticated attack method where a malicious actor injects unauthorized commands or data into a prompt, often via text input fields or user-generated content. In this scenario, the attack leverages the markdown syntax used to render images. Markdown allows users to include images by specifying a URL, which the system then fetches and displays. However, a clever attacker can manipulate this feature by crafting a URL that, when accessed, sends the system’s internal data to an external server controlled by the attacker. This method is particularly dangerous because it can be executed indirectly, meaning the attacker doesn’t need direct access to the system or sensitive data; instead, they rely on the system’s normal operation to trigger the data leak. In a typical attack, an attacker might inject a prompt into a system that is configured to handle markdown content. When the system processes this content, it unwittingly executes the injected prompt, causing it to access an external server through the image URL. This URL can be designed to capture and log data, such as cookies, session tokens, or other sensitive information. Since the markdown image rendering process often occurs in the background, this type of data exfiltration can go unnoticed, making it a stealthy and effective attack vector. The risk is amplified in environments where users have the ability to input markdown, such as in collaborative platforms or content management systems, where this vulnerability could lead to significant data breaches.

Uncategorized

Direct Prompt Injection / Information Disclosure

Direct Prompt Injection is a technique where a user inputs specific instructions or queries directly into an LLM (Large Language Model) to influence or control its behavior. By crafting the prompt in a particular way, the user can direct the LLM to perform specific tasks, generate specific outputs, or follow certain conversational pathways. This technique can be used for legitimate purposes, such as guiding an LLM to focus on a particular topic, or for more experimental purposes, like testing the boundaries of the model’s understanding and response capabilities. However, if misused, direct prompt injection can lead to unintended consequences, such as generating inappropriate or misleading content. Sensitive Information Disclosure in LLMs via Prompt Injection occurs when a user manipulates the prompt to extract or expose information that should remain confidential or restricted. LLMs trained on large datasets may inadvertently learn and potentially reproduce sensitive information, such as personal data, proprietary knowledge, or private conversations. Through carefully crafted prompts, an attacker could coerce the model into revealing this sensitive data, posing a significant privacy risk. Mitigating this risk requires rigorous data handling practices, including the anonymization of training data and implementing guardrails within the LLM to recognize and resist prompts that seek to extract sensitive information.

Uncategorized

LLM Prompting with emojis

Prompting via emojis is a communication technique that uses emojis to convey ideas, instructions, or stories. Instead of relying solely on text, this method leverages visual symbols to represent concepts, actions, or emotions, making the message more engaging and often easier to understand at a glance. This approach is particularly popular in digital communication platforms like social media, where brevity and visual appeal are crucial. Emojis work well as prompts because they are universally recognized symbols that transcend language barriers. They can quickly convey complex ideas or emotions with a single image, making communication faster and more efficient. Additionally, emojis are visually engaging, which can enhance memory retention and increase the likelihood of the message being noticed and understood. In creative contexts, emoji prompts can stimulate imagination and encourage users to think outside the box. However, using emojis as prompts also presents security risks. Emojis can be ambiguous, leading to misinterpretation, which can be problematic in situations requiring precise communication. Additionally, emojis can be used to obscure or encode messages, potentially hiding malicious intent in otherwise innocuous-looking communication. This can make it difficult for automated systems or human reviewers to detect harmful content, leading to risks such as phishing or spreading misinformation. In environments where security is paramount, relying on emojis alone for critical instructions or communication could result in vulnerabilities.

Uncategorized

Prompt Injection via image

In this video I will explain prompt injection via an image. The LLM is asked to describe the image but fails to do so. It reads the injection commands instead and acts on them.

Uncategorized

AI Security Expert Blog

Welcome. In this blog we will regularly publish blog articles around Penetration Testing and Ethical Hacking of AI and LLM systems as well as useful trips and tricks on how to utilize artificial intelligence for both offensive and defensive security purposes. In addition, we will publish proof of concept videos on YouTube and embed the videos here in the blog. Subscribe to our YouTube channel and X account to stay up to date on latest Security developments around Artificial Intelligence (AI), Large Language Models (LLM) and Machine Learning (ML).

Scroll to Top